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Abstract

We discuss the implementation of arbitrary precision composite pulses developed using the methods of Brown et al.
[K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70 (2004) 052318].
We give explicit results for pulse sequences designed to tackle both the simple case of pulse length errors and the more complex
case of off-resonance errors. The results are developed in the context of NMR quantum computation, but could be applied more
widely.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Composite pulses [1] have long played an important
role in many NMR experiments, allowing the effects of
systematic errors to be reduced. More recently they have
been applied in quantum computing [2], including both
magnetic resonance experiments and other implementa-
tions [3–6]. Composite pulses developed for quantum
computing differ from more conventional NMR
approaches in two key ways. Firstly they must perform
the desired rotation whatever the starting state of the sys-
tem, so that they act as general rotors; in NMR such
pulses are sometimes called type A composite pulses [1],
and have the advantage that they can be inserted into
any part of a pulse sequence without the need for careful
analysis. Secondly, they are usually designed to give extre-
mely accurate rotations in the presence of small errors,
rather than to give reasonable rotations in the presence
of large errors. Despite these differences, however, com-
posite pulses designed for quantum computation can be
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2007.09.001

* Corresponding author. Fax: +44 1865 272387.
E-mail address: jonathan.jones@qubit.org (J.A. Jones).
used in conventional NMR experiments, and studying
them can give some insight into more conventional
approaches.

Type A composite pulses are most commonly used to
tackle pulse length errors, which occur when the strength
of the driving field differs from its nominal value, for exam-
ple as a result of inhomogeneity, and off-resonance errors,
which occur when the frequency of the driving field is not
quite in resonance with the transition of interest. For pulse
length errors the BB1 sequence [7], originally developed by
Wimperis, has proved highly successful. Designing good
type A pulses for off-resonance errors has proved more
difficult, with the CORPSE sequence [3,4], based on an
early numeric result by Tycko [8], being perhaps the most
satisfactory.

More recently Brown et al. have described a general
method [9,10] for generating arbitrary precision composite
pulses, which they claim can be applied to tackle errors
of arbitrary kinds. They do not, however, give explicit solu-
tions for more than a small number of cases. We will show
that it is simple to apply their methods to generate pulses
resistant to pulse length errors, but it is more difficult to
tackle off-resonance effects.

mailto:jonathan.jones@qubit.org
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2. Pulse length errors

We consider rotations about axes in the xy plane, for
which an ideal rotation is described by the propagator

Uðh;/Þ ¼ exp½�ihðrx cos /þ ry sin /Þ=2� ð1Þ

where h, the rotation angle, depends on the strength of the
resonant driving field and the time for which it is applied,
and /, the phase, depends on the phase of the field with re-
spect to some appropriate reference. Following Brown
et al. [9] we describe our rotations in terms of the Pauli
matrices, which are trivially related to the corresponding
single spin product operator terms [11]. The description
above is really only appropriate when h P 0, but also
works for negative angles as

Uð�h;/Þ ¼ Uðh;/þ pÞ ¼ U�1ðh;/Þ: ð2Þ

In the presence of errors, however, this extension may not
be appropriate and it is necessary to proceed with some
caution.

Pulse length errors occur when the strength of the field is
higher or lower than its nominal value, so that all rotation
angles are systematically wrong by some constant fraction
�. It is convenient to write

V ðh;/Þ ¼ Uðh½1þ ��;/Þ ð3Þ

in such cases, and a series expansion in the error � gives

V ðh;/Þ ¼ Uðh;/Þ þOð�Þ ð4Þ

so that the propagator has first order errors in �. Note that
in this paper we write all our composite pulses as sequences
of propagators, so that the order of pulses runs from right
to left. We classify pulse sequences according to n, the or-
der of error in the propagator, but will occasionally refer to
the corresponding propagator fidelity

F ¼ 1

2
TrðVU�1Þ ¼ 1�Oð�2Þ ð5Þ

in which errors appear to order 2n. For pulse length errors

V ðh;/þ pÞ ¼ V �1ðh;/Þ ð6Þ

which will prove very useful throughout this section.
Several composite pulse methods for correcting such

pulse length errors exist, most notably BB1 [7]. This
replaces a single pulse with a sequence of pulses such that

V ðp;/aÞV ð2p;/bÞV ðp;/aÞV ðh; 0Þ ¼ Uðh; 0Þ þOð�3Þ ð7Þ

where /b = 3/a and /a = arccos(�h/4p), to give a propa-
gator with third order errors in �. This pulse sequence
was discovered using geometric arguments, and turns out
to be remarkably effective in practice [4,12].

Brown et al. replaced previous methods of finding com-
posite pulses, based on intuitions or special forms, by a sys-
tematic procedure [9]. We begin by describing in detail how
this procedure can be used to generate a series of composite
pulses to correct pulse length errors. As before we only
consider target rotations with phase angles of zero, as more
general rotations in the xy plane are trivially derivable
from these by offsetting the phase of all pulses appropri-
ately. These pulses can also be used to design sequences
for robust evolution under J-couplings [13].

2.1. Isolating the error

The first step is to isolate the error part of a pulse
sequence by calculating

A1 ¼ V ðh; 0ÞU�1ðh; 0Þ ¼ 1� ih
2
�rx þOð�2Þ ð8Þ

where A1 indicates a first order error in a sequence correct
to zero order. Since

A�1
1 V ¼ UV �1V ¼ U ð9Þ

if we can generate A�1
1 exactly then we can convert an erro-

neous rotation into a correct one. More realistically, if we
can generate A�1

1 correct to first order then we can use this
to cancel out the first order error in the original pulse. To
do this it is useful to note that

A1 ¼ Uð�h; 0Þ þOð�2Þ ð10Þ

so that A�1
1 is approximately equal to an x-rotation with

angle �h�.

2.2. Generating a pure error term

To correct the first order error it is necessary to generate
a matching rotation whose angle is directly proportional to
the error fraction �. A pure error term of this kind is most
easily generated by noting that

V ð2p; 0Þ ¼ �1þ ip�rx þOð�2Þ ð11Þ

has the correct general form (the global phase of �1 can be
ignored as usual). However while the error has the right
form it has the wrong magnitude. This can be fixed by
using two rotations with different phases [9], as

X 1ð/Þ ¼ Vð2p;/ÞVð2p;�/Þ
¼ 1� i2p cosð/Þ�rx þOð�2Þ ð12Þ

and so the size of the error can be scaled. In particular,
solving

�2p cosð/1Þ ¼ h=2 ð13Þ

to get

/1 ¼ � arccosð�h=4pÞ ð14Þ

allows the first order error to be corrected (note that the
sign of the error term must be reversed as we are seeking
to approximate A�1

1 rather than A1). This gives

X 1ð/1ÞV ðh; 0Þ ¼ Uðh; 0Þ þOð�2Þ ð15Þ

as a pulse sequence which is correct to second order. Inter-
estingly the key phase angle /1 has the same size as /a in
the BB1 sequence. The sign of /1 (and /a) seems arbitrary,
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but for definiteness we choose the positive value. This point
will be examined in more detail later.

The size and scaling of the errors permits a value of /1

to be found for any choice of h, but if larger error terms are
needed they can be achieved by simply repeating the
sequence of 2p rotations, thus doubling the error. In pass-
ing we note that although the approximate form given in
Eq. (12) is independent of the sign of /, and thus of the
order of the two 2p pulses, the exact form of X1 does in fact
depend on the sign of /, and it is therefore necessary to use
a consistent order. This will become important below.

2.3. Treating the second order error

The process described above can then be repeated to iso-
late the second order error

A2 ¼ X 1ð/1ÞV ðh; 0ÞU�1ðh; 0Þ ð16Þ

with the result

A2 ¼ 1� ih
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p2 � h2

p
8

�2rz þOð�3Þ: ð17Þ

To correct this will require an error term dependent on �2,
rather than on �, and directed along the z axis rather than
the x axis. This can be achieved by using the properties of
group commutators. As these properties play a key role in
the proof of the Solovay–Kitaev theorem [14] Brown
et al. refer to the results as SK pulse sequences, but beyond
the role of group commutators there is no need to under-
stand the Solovay–Kitaev theorem to see how their meth-
ods work. The key result

expð�iA�lÞ expð�iB�mÞ expðiA�lÞ expðiB�mÞ
¼ expð½A;B��lþmÞ þOð�lþmþ1Þ ð18Þ

shows that two different first order pure error terms can be
combined to make a single second order pure error term as
long as their directions are chosen properly and inverses are
available for each error term. This restriction will not be
important for pulse length errors but will be more problem-
atic for off-resonance errors.

As the commutator [rx,ry] = �2irz the desired second
order error term along z can be generated from x and y

terms. The x term can be generated as before, Eq. (12),
and the equivalent y term Y1 can be generated in the same
way by shifting the phase of both pulses by p/2. (Brown
et al. in fact described an alternative method [9] for imple-
menting Y1, but this alternative is more complex.) Inverse
terms can be generated by reversing the order of the two
2p pulses and shifting their phases by p. Note that it is nec-
essary to reverse the sequence of pulses even though Eq.
(12) appears to be independent of this, as the two alterna-
tives differ to second order in �; it is not sufficient to gener-
ate an inverse which only accurate to first order. Hence

Z2ð/Þ ¼ X 1ð/ÞY 1ð/ÞX�1
1 ð/ÞY �1

1 ð/Þ
¼ 1� i8p2 cos2ð/Þ�2rz þOð�3Þ ð19Þ
allows a second order z error of some desired size to be gen-
erated. If an error of the opposite sign is needed then the X1

and Y1 sequences can be interchanged to give

Z 02ð/Þ ¼ Y 1ð/ÞX 1ð/ÞY �1
1 ð/ÞX�1

1 ð/Þ
¼ 1þ i8p2 cos2ð/Þ�2rz þOð�3Þ: ð20Þ

As before we can solve

8p2 cos2ð/2Þ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p2 � h2

p .
8: ð21Þ

to remove the second order error, giving

/2 ¼ � arccos �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p2h2 � h44

p
8p

" #
ð22Þ

where the signs may be chosen independently, and we
choose initially to take both positive signs. Thus

Z 02ð/2ÞX 1ð/1ÞV ðh; 0Þ ¼ Uðh; 0Þ þOð�3Þ ð23Þ

is our desired pulse sequence, correct to third order. The
explicit expansion

Vð2p;p=2þ/2ÞVð2p;p=2�/2ÞVð2p;/2ÞVð2p;�/2Þ
Vð2p;3p=2�/2ÞVð2p;3p=2þ/2ÞVð2p;p�/2ÞVð2p;pþ/2Þ
Vð2p;/1ÞVð2p;�/1ÞVðh;0Þ

ð24Þ

shows that this contains a total of ten correction pulses in
addition to the main pulse.

2.4. Rotating and redividing the error

The sequence described above is not in fact the sequence
originally described by Brown et al. Their approach [9] is
instead based on generating an X2 error correction term
using appropriate Y1 and Z1 sequences and then rotating
this onto the z axis. In the absence of systematic errors,
such rotations are easily performed. For example the
identity

Uðp=2; 3p=2ÞUðh; 0ÞUðp=2; p=2Þ ¼ expð�ihrz=2Þ ð25Þ
allows a z rotation to be generated from x and y rotations,
a composite Z-pulse [16]. In the presence of systematic er-
rors it is necessary to proceed with more caution, as the
errors in different pulses will combine in a complex manner.
However, in the presence of pulse length errors it is possi-
ble to use imperfect pulses to rotate pure error terms, as

V ðp=2; 3p=2ÞX nV ðp=2; p=2Þ ¼ Zn þOð�nþ1Þ ð26Þ
for any error order n, and similarly for other error terms.
This approach requires the ability to generate accurate in-
verse operators, and while this is easy for pulse length er-
rors it can be tricky in other cases.

For pulse length errors we can implement the second
order correction sequence using
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Z 02ð/2Þ �V ðp=2; 3p=2ÞX 02ð/2ÞV ðp=2; p=2Þ ð27Þ
X 02ð/2Þ ¼Z1ð/1ÞY 1ð/1ÞZ�1

1 ð/1ÞY �1
1 ð/1Þ ð28Þ

Z1ð/2Þ �V ðp=2; 3p=2ÞX 1ð/2ÞV ðp=2; p=2Þ: ð29Þ

This alternative sequence gives identical performance at
second order (complete correction of errors) but differs in
its third order behaviour, as we shall see later.

We can also consider many other possibilities: firstly we
can instead generate Z 02 from any of Y 02, X2, or X 02; secondly
we can use alternative rotations to generate Z1; thirdly we
can use the negative sign for /1 in the first order correction
sequence (in which case the second order error changes
sign). Beyond these possibilities, built around rotating the
error, we can also choose how to divide up the relative con-
tributions to the second order error term arising from the
two first order terms. For example we can write

Z2ða; bÞ ¼ X 1ðaÞY 1ðbÞX�1
1 ðaÞY �1

1 ðbÞ
¼ 1� i8p2 cosðaÞ cosðbÞ�2rz þOð�3Þ ð30Þ

and control the size of the second order error term by vary-
ing a and b. More simply still, we can use the fact that
V(2p, 0) gives an unscaled pure error term along x to use
the form

Vð2p; 0ÞY 1ðbÞVð2p; pÞY �1
1 ðbÞ

¼ 1� i4p2 cos b�2rz þOð�3Þ ð31Þ

which only has six pulses, rather than the usual eight, and
obtain the correct error term by choosing

b ¼ � arccos � h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p2 � h2

p
32p2

" #
: ð32Þ
2.5. Choosing between sequences

Given this plethora of subtly different sequences it is rea-
sonable to ask which is the best. In some sense all second
order pulse sequences are equally good, as they all suppress
errors to the same order, but it is possible to choose
between them either by considering higher order errors,
or by considering sensitivity to other types of error [4].

Here, we adopt the first approach, choosing to minimize
the size of the third order error term, and initially special-
izing to the case of 180� pulses, so that h = p. The smallest
error term we have so far been able to find occurs when
using Eqs. (27)–(29) to create the second order term, and
taking positive signs throughout Eqs. (14) and (22). There
is no obvious reason why this choice is best, but it does give
a third order error more than 15 times smaller than some
other alternatives.

Interestingly, the second best choice we have found is
the BB1 sequence, which for the case h = p has an error
only about 10% larger than the best sequence. Furthermore
for BB1 the size of the third order error term scales approx-
imately linearly with h, while the behavior of the ‘‘best’’
sequence, described above, is more complex. Thus for most
flip angles (specifically, h < 168�) BB1 is the best second
order sequence known. For the case of 180� pulses it has
a fidelity

F ¼ 1� 5p6

1024
�6 þOð�8Þ: ð33Þ
2.6. Third order errors

We can of course correct the third order error term in
much the same way as the first and second order errors.
As pointed out by Brown et al. there is no need to use a
fully systematic approach of correcting error orders in
sequence; instead we can begin with BB1 and correct the
third order error term.

The third order error term for BB1 (and indeed for all
the other sequences considered above) lies in the xy plane,
with the size and position depending on the value of h.
Here, we do not give complete results, but simply sketch
a partial solution. There are many possibilities for generat-
ing a third order error, but one simple example is

X 3ð/Þ ¼ Y 1ð/ÞZ2ð/ÞY �1
1 ð/ÞZ�1

2 ð/Þ
¼ 1� i32p3 cos3ð/Þ�3rx þOð�4Þ ð34Þ

where Z2(/) is generated from X1(/) and Y1(/) as before,
Eq. (19), and Z�1

2 ¼ Z 02, so that this sequence only requires
x and y rotations. The error term can then be rotated into
the correct position, either by composite z rotations or,
more simply, by shifting the phases of all the pulses in
the X3 term.

As before we need to choose a value of /3 to cancel the
third order error, but as the calculations become very com-
plicated we here consider only the special case of 180�
pulses, h = p. Even in this case the analytic result is compli-
cated, and so we simply give the numerical value,
/3 � 73.1�; the required phase shift can also be calculated
as approximately �1.6�.

3. Off-resonance errors

The treatment of off-resonance errors is superficially
similar but much more difficult in practice. The fundamen-
tal problem is that, unlike the case of pulse length errors, it
is not possible to generate perfect inverses of arbitrary rota-
tions in the presence of off-resonance errors.

Off-resonance errors occur when the frequency of the
driving field is not quite in resonance with the transition
of interest, so that all rotations occur around a tilted axis.
They can be parameterized in terms of the off-resonance
fraction f, equal to the ratio of the frequency error and
the driving frequency. The basic rotation in then

Vðh;/Þ ¼ exp½�ihðrx cos /þ ry sin /þ f rzÞ=2�
¼ Uðh;/Þ þOðfÞ ð35Þ

which has first order errors in f. Unlike the case of pulse
length errors this definition should only be used for positive
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values of h. The CORPSE family of sequences [3,4] for cor-
recting off-resonance errors uses the three pulse sequence

Cðh;/Þ ¼ Vðhc;/ÞVðhb;/þ pÞVðha;/Þ
¼ Uðh;/Þ þOðf 2Þ ð36Þ

where

ha ¼na2pþ h=2� arcsin½sinðh=2Þ=2� ð37Þ
hb ¼nb2p� 2 arcsin½sinðh=2Þ=2� ð38Þ
hc ¼nc2pþ h=2� arcsin½sinðh=2Þ=2� ð39Þ

and the size of the second order error term depends on the
values chosen for the integers na, nb and nc. The smallest er-
rors are seen for the original CORPSE sequence, which has
na = nb = 1 and nc = 0; for the case of 180� pulses the fidel-
ity is

F ¼ 1� 12þ p2 � 4
ffiffiffi
3
p

32
f 4 þOðf 6Þ: ð40Þ

Short-CORPSE, defined by na = nc = 0 and nb = 1 is the
shortest possible sequence but has a much larger error term
[4].

The CORPSE family will play a key role in the following
sections, not simply because it provides a pulse sequence
with no first order errors, but mostly because it provides
a route to sufficiently accurate inverse propagators. In the
presence of off-resonance errors V(h,/ + p) is not an accu-
rate inverse for V(h,/) as

V ðh; pÞV ðh; 0Þ ¼ 1þOðf Þ: ð41Þ
The corresponding CORPSE pulses perform much better,

Cðh; pÞCðh; 0Þ ¼ 1þOðf 3Þ; ð42Þ
and provide sufficiently accurate inverses to allow error
terms to be rotated as for pulse length errors. As before
the size of the third order error term depends on the exact
choice of sequence, but is now smallest for short-CORPSE.

3.1. Correcting first order errors

We now explore the systematic correction of error
orders using the methods previously described. The first
order error can be isolated as before,

A1 ¼ V ðh; 0ÞU�1ðh; 0Þ
¼ 1� i sinðhÞ=2f rz þ i sin2ðh=2Þf ry þOðf 2Þ ð43Þ

and in general lies in the yz plane. Tunable pure error terms
can be created either by using the form given by Brown
et al. [9],

B1ð/Þ ¼ Vð/; 0ÞVð2/; pÞVð/; 0Þ
¼ 1� i2 sinð/Þf rz þOðf 2Þ; ð44Þ

or the alternative form

Y 01ð/Þ ¼ V ðp;/ÞV ðp; pþ /ÞV ðp;�/ÞV ðp; p� /Þ
¼ 1þ i4 cosð/Þf ry þOðf 2Þ: ð45Þ
Designing a sequence for the case h = p is easy as the error
lies solely along the y axis in this case, and so

Y 01ð/1ÞV ðp; 0Þ ¼ Uðp; 0Þ þOðf 2Þ ð46Þ

with the choice /1 = arccos(�1/4) � 104.5�. Interestingly,
the key phase angle in this sequence turns out to be the
same as that used in a BB1 pulse with h = p. The size of
the second order error term is significantly larger than for
CORPSE (and somewhat larger than for short-CORPSE),
with a fidelity

F ¼ 1� 60þ p2

32
f 4 þOðf 5Þ: ð47Þ

but this sequence does have the relative simplicity of being
constructed solely from 180� rotations, albeit with compli-
cated phases.

Designing a sequence for other values of h is, however,
much trickier. In the general case the error does not lie
along a principal axis, and so it might seem that we should
rotate one of the two pure error terms. This cannot be done
directly using simple rotations, as accurate inverse propa-
gators are required to rotate error terms. It could be
achieved using CORPSE pulses, but this is not sensible as
CORPSE is already correct to first order.

An alternative approach is to note that pure error
sequences can simply be combined, and so build up a tilted
error by combining the z and y error sequences,

B1ð/z
1ÞY 01ð/

y
1Þ ¼ 1� i2 sinð/z

1Þf rz þ i4 cosð/y
1Þf ry

þOðf 2Þ ð48Þ

with any cross terms between the two parts if the pulse se-
quence being swallowed up into the O(f 2) term. Choosing
/y

1 ¼ arccos½� sin2ðh=2Þ=4� and /z
1 ¼ � arcsin½sinðhÞ=4� al-

lows first order off-resonance errors to be suppressed in
the general case. However, the size of the second order er-
ror term remains significantly larger than for CORPSE,
and this general sequence does not have the simplicity seen
for the special case of 180� pulses. Thus CORPSE remains
the best currently known type A sequence correct to first
order in the presence of off-resonance errors.
3.2. Correcting higher order errors

The systematic approach can, more sensibly, be used to
correct higher order errors. As the equations for arbitrary
values of h become extremely complicated we will again
limit ourselves to the special case h = p. We extend our
definitions

X 1ð/Þ¼V ðp;p=2�/ÞV ðp;3p=2�/ÞV ðp;p=2þ/ÞV ðp;3p=2þ/Þ
¼1� i4cosð/Þf rxþOðf 2Þ ð49Þ

Y 1ð/Þ¼V ðp;p�/ÞV ðp;�/ÞV ðp;pþ/ÞV ðp;/Þ
¼1� i4cosð/Þf ryþOðf 2Þ ð50Þ

X 01ð/Þ¼V ðp;3p=2þ/ÞV ðp;p=2þ/ÞV ðp;3p=2�/ÞV ðp;p=2�/Þ
¼1þ i4cosð/Þf rxþOðf 2Þ ð51Þ
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and note that X 01ð/Þ � X�1
1 ð/Þ. The approximation is good

enough that these terms can be used to build higher order
propagators; in particular

Z2ð/Þ ¼ X 1ð/ÞY 1ð/ÞX 01ð/ÞY 01ð/Þ ¼ 1� i32 cos2ð/Þf 2rz

ð52Þ

and

Z 02ð/Þ ¼ Y 1ð/ÞX 1ð/ÞY 01ð/ÞX 01ð/Þ ¼ 1þ i32 cos2ð/Þf 2rz: ð53Þ
The second order error can be isolated as usual

A2 ¼ Y 01ð/1ÞV ðp; 0ÞU�1ðp; 0Þ
¼ 1� i

ffiffiffiffiffi
15
p

=2f 2rz � ip=4f 2rx þOðf 3Þ ð54Þ

and lies in the xz plane with magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60þ p2
p

=4.
One approach to correcting this is by using CORPSE

pulses to rotate an appropriate Z2 error around the y axis
to get the final sequence

Cðw2; p=2ÞZ 02ð/2ÞCðw2; 3p=2ÞY 01ð/1ÞVðp; 0Þ
¼ Uðp; 0Þ þOðf 3Þ ð55Þ

with

/2 ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60þ p24
p

8
ffiffiffi
2
p

� �
� 75:2� ð56Þ

and

w2 ¼ arctan
p

2
ffiffiffiffiffi
15
p

� �
� 22:1�: ð57Þ

This approach can, of course, be generalized to other angles
and higher orders, but the resulting algebra is very complex.
For simplicity it is possible to check results using ideal rota-
tions in place of CORPSE based rotations: this will give the
right result for error terms which are completely suppressed,
but the wrong values for higher order errors.

Alternatively, we can construct the tilted error term out
of a combination of z and x errors as in the previous sec-
tion. We begin by noting that B1(3p/2) provides a good
inverse for the pure error term B1(p/2), and that this allows
us to construct a second order x error using

X 2ð/Þ ¼ Y 1ð/ÞB1ðp=2ÞY 01ð/ÞB1ð3p=2Þ ¼ 1� i16 cosð/Þf 2rx:

ð58Þ

This can be combined with a z error to get the pulse
sequence

X 2ð/x
2ÞZ 02ð/

z
2ÞY 01ð/1ÞV ðp; 0Þ ¼ Uðp; 0Þ þOðf 3Þ ð59Þ

where /x
2¼ arccosð�p=64Þ� 92:8� and /z

2¼arccosð
ffiffiffiffiffi
154
p

=8Þ�
75:8�. This sequence has the advantage over the CORPSE
based approach of requiring only 90� and 180� pulses.

3.3. Time symmetric sequences

In passing we consider the use of time-symmetry in com-
posite pulse sequences [4]. In the presence of off-resonance
errors time symmetric composite pulses have fidelities
which are even functions of the off-resonance fraction f

[15], and so give the same fidelity for +f and �f, although
the details of the error may differ. Although such symmet-
ric fidelities have no advantage in principle, the results are
certainly easier to interpret.

As an example we consider a time symmetric version of
the pulse sequence to correct first order errors arising
from off-resonance effects in a 180� pulse, which takes
the form

Y 01ð/
0
1ÞV ðp; 0ÞY 1ð/01Þ ¼ Uðp; 0Þ þOðf 2Þ ð60Þ

where /01 ¼ arccosð�1=8Þ � 97:2�. The fidelity of this
sequence has no fifth order term, unlike that of the pre-
vious version, Eq. (46), but as both fidelities are domi-
nated by fourth order errors this is largely a cosmetic
improvement.

3.4. Simultaneous errors

So far we have only considered the effects of pulse length
errors and off-resonance errors in isolation, while in real
physical systems both sorts of error can occur simulta-
neously. It is generally difficult to find pulse sequences
which suppress both sorts of error simultaneously, but it
is still important to consider whether insensitivity to one
type of error is obtained at the cost of increased sensitivity
to other types of errors [4].

As noted previously [4], the response of the time sym-
metric version of BB1 to off-resonance errors is very similar
to that of a simple pulse. This occurs because in the absence

of pulse length errors the correction sequence

V ðp;/1ÞV ð2p; 3/1ÞV ðp;/1Þ ¼ 1þOðf 2Þ ð61Þ
has no first order terms arising from off-resonance errors,
and so does not contribute significantly to the total error.
In the same way in the absence of off-resonance errors the
correction sequence

V ðp;/1ÞV ðp; pþ /1ÞV ðp;�/1ÞV ðp; p� /1Þ ¼ 1 ð62Þ
has no error terms arising from pulse length errors at all.
Thus these two sequences can be combined, giving the
composite 180� pulse

V ðp;/1ÞV ðp; pþ /1ÞV ðp;�/1ÞV ðp; p� /1Þ
V ðp;/1ÞV ð2p; 3/1ÞV ðp;/1ÞV ðp; 0Þ

ð63Þ

with /1 = arccos(�1/4). This has a fidelity

F ¼ 1� 15

8
f 4 � 5p6

1024
�6 � 169p2

32
f 2�2 þ higher terms ð64Þ

so in the absence of off-resonance errors the correction of
pulse length errors is identical to a BB1 sequence, and in
the absence of pulse length errors the correction of off-res-
onance errors is even better than the simple pulse, Eq. (46).
This pulse can correct well for either pulse length errors or

off-resonance errors; in the presence of simultaneous errors
the performance is not so good, but is still much better than
a simple 180� pulse.



120 W.G. Alway, J.A. Jones / Journal of Magnetic Resonance 189 (2007) 114–120
4. Summary

The methods of Brown et al. can indeed be used to
derive arbitrary precision composite pulses, but the process
can be somewhat complicated. For the case of pulse length
errors the situation is simple, as it is possible both to gen-
erate a wide range of pure error terms and their inverses,
and to rotate these terms using uncorrected pulses. The
case of off-resonance errors is much more complicated
because the difficulty of generating accurate inverses of
incorrect rotations means that the most direct approach
cannot be used.
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